32. | A mean curvature flow arising in adversarial training with Leon Bungert and Kerrek Stinson, submitted, 32 pp. arXiv:2404.14402 | |
31. | A weak-strong uniqueness principle for the Mullins-Sekerka equation, with?Julian Fischer, Sebastian Hensel, and Theresa M. Simon, preprint, 48 pp. arXiv:2404.02682 | |
30. | A uniqueness and stability principle for surface diffusion, with Milan Kr?mer, submitted, 26 pp. arXiv:2212.12487 | |
29. | Local minimizers of the interface length functional based on a concept?of local paired calibrations, with Julian Fischer, Sebastian Hensel, and Theresa M. Simon, submitted, 35 pp. arXiv:2212.11840 | |
28. | Large data limit of the MBO scheme for data clustering: Γ-convergence of the thresholding energies, with Jona Lelmi, submitted,?57 pp. arXiv:2112.06737 |
27. | Quantitative convergence of the nonlocal Allen-Cahn equation to volume-preserving mean curvature flow, with Milan Kr?mer, to appear in Math. Ann., 14 pp. arXiv:2309.12409 | |
26. | Generic level sets in mean curvature flow are BV solutions, with Anton Ullrich, to appear in J. Geom. Anal., 16 pp. arXiv:2301.01097 | |
25. | Diffuse-interface approximation and weak-strong uniqueness of?anisotropic mean curvature flow, with Kerrek Stinson and Clemens Ullrich, European J. Appl. Math. (first view)?61?pp. arXiv:2212.11939 | |
24. | A new varifold solution concept for mean curvature flow: Convergence of the Allen-Cahn equation and weak-strong uniqueness, with Sebastian Hensel, to appear in J. Differential?Geom.,?38 pp. arXiv:2109.04233 | |
23. | ???? | The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions, with Julian Fischer, Sebastian Hensel, and Theresa M. Simon, first part to appear in J. Eur. Math. Soc. (JEMS),?104 pp. arXiv:2003.05478 |
22. | ? | Large data limit of the MBO scheme for data clustering: Convergence of the dynamics, with Jona Lelmi, J. Mach. Learn. Res. (JMLR)?24(344):1-49, 2023 https://jmlr.org/papers/v24/22-1089.html |
21. | A phase-field version of the Faber-Krahn theorem, with?Paul Hüttl and?Patrik Knopf, to appear in Interfaces Free Bound., 30 pp. arXiv:2207.10946 | |
20. | Sharp interface limit of the Cahn-Hilliard reaction model for lithium-ion batteries, with Kerrek Stinson, Math. Models Methods Appl. Sci., 33:12, 2557–2585, 2023. DOI:10.1142/S0218202523500550 | |
19. | Phase-field methods for spectral shape and topology optimization, with Harald Garcke, Paul Hüttl, Christian Kahle, and Patrik Knopf, ESAIM:?Control Optim. Calc. Var.?29:10, 57 pp., 2023. DOI:10.1051/cocv/2022090 | |
18. | Strong convergence of the thresholding scheme for the mean curvature flow of mean convex sets, with Jakob Fuchs, Adv. Calc. Var.?(online first), 59?pp. DOI:10.1515/acv-2022-0020 | |
17. | Weak-strong uniqueness for volume-preserving mean curvature flow, Rev. Mat. Iberoam.?40:1, pp. 93–110, 2024. DOI:10.4171/RMI/1395 | |
16. | The Hele-Shaw flow as the sharp interface limit of the Cahn-Hilliard equation with disparate mobilities, with Milan Kr?mer, Comm. Partial Differential Equations,?47(12):2444-2486,?2022. DOI: 10.1080/03605302.2022.2129384 | |
15. | BV solutions for mean curvature flow with constant contact angle: Allen-Cahn approximation and weak-strong uniqueness, with Sebastian Hensel, Indiana Univ. Math. J.?(online first), 24 pp. arXiv.2112.11150 | |
14. | Weak-strong uniqueness for the mean curvature flow of double bubbles, with Sebastian Hensel, Interfaces Free Bound.?25,?no. 1,?pp. 37–107, 2023. DOI:10.4171/IFB/484 | |
13. | De Giorgi's inequality for the thresholding scheme with arbitrary mobilities and surface tensions, with Jona Lelmi, Calc. Var. Partial Differential Equations,?61(1):35, 42 pp., 2022. DOI:10.1007/s00526-021-02146-8 | |
12. | Nematic-isotropic phase transition in liquid crystals: A?variational derivation of effective geometric motions, with Yuning Liu, Arch. Ration. Mech. Anal.?241(3):1785-1814, 2021. DOI:10.1007/s00205-021-01681-0 | |
11. | ???? | Convergence rates of the Allen-Cahn equation to mean curvature flow: A?short proof based on relative entropies, with Julian Fischer and Theresa M. Simon, SIAM J. Math. Anal.,?52(6):6222-6233, 2020. DOI:10.1137/20M1322182 |
10. | ???? | Mullins-Sekerka as the Wasserstein flow of the perimeter, with Antonin Chambolle, Proc. Amer. Math. Soc., 149(7):2943-2956, 2021. DOI:10.1090/proc/15401 |
9. | ???? | Implicit time discretization for the mean curvature flow of mean convex sets, with Guido De Philippis, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5),?21:911-930, 2020. DOI:10.2422/2036-2145.201810_003 |
8. | ???? | Well-posedness for degenerate elliptic PDE arising in optimal learning strategies, with J. Miguel Villas-Boas, Interfaces Free Bound., 22(1):119-129, 2020. DOI: 10.4171/IFB/434? |
7. | ???? | Brakke's inequality for the thresholding scheme, with Felix Otto, Calc. Var. Partial Differential Equations, 59(1):39, 26 pp., 2020. DOI:10.1007/s00526-020-1696-8 |
6. | ???? | Analysis of diffusion generated motion for mean curvature flow in codimension two: A?gradient-flow approach, with Aaron Yip, Arch. Ration. Mech. Anal., 232(2):1113-1163, 2019. DOI:10.1007/s00205-018-01340-x |
5. | ???? | Convergence of the Allen-Cahn equation to multiphase mean curvature flow, with Theresa M. Simon, Comm. Pure Appl. Math., 71(8):1597-1647, 2018. DOI:10.1002/cpa.21747 |
4. | ???? | Gradient-flow techniques for the analysis of numerical schemes for multi-phase mean-curvature flow, Geometric Flows, 3(1):76-89, 2018. DOI:10.1515/geofl-2018-0006 |
3. | ???? | The elastic flow of curves on the sphere, with Anna Dall'Acqua, Chun-Chi Lin, Paola Pozzi, and Adrian Spener, Geometric Flows, 3(1):1-13, 2018. DOI:10.1515/geofl-2018-0001 |
2. | ???? | Convergence of thresholding schemes incorporating bulk effects, with Drew Swartz, Interfaces Free Bound., 19(2):273-304, 2017. DOI:10.4171/IFB/383 |
1. | ???? | Convergence of the thresholding scheme for multi-phase mean-curvature flow, with Felix Otto, Calc. Var. Partial Differential Equations, 55(5):129, 74 pp., 2016. DOI:10.1007/s00526-016-1053-0 |
P8. | The large-data limit of the MBO scheme for data clustering, with Jona Lelmi, Oberwolfach Report (to appear), 2023. | |
P7. | A new varifold solution concept for mean curvature flow, with Sebastian Hensel, Oberwolfach Report?(to appear),?2023. | |
P6. | Large data limit of the MBO scheme for data clustering, with Jona Lelmi, Proc. Appl. Math. Mech.?22.1,?e202200308,?2023. DOI:10.1002/pamm.202200308 | |
P5. | ???? | A gradient-flow approach for the convergence of the anisotropic Allen-Cahn equation. RIMS K?ky?roku?2172, Geometric Aspects of Solutions to Partial Differential Equations, pp. 32-42, Research Institute for Mathematical Sciences, Kyoto University, Japan, 2020.? |
P4. | ???? | The thresholding scheme for mean curvature flow and De Giorgi's ideas for minimizing?movements, with Felix Otto, Adv. Stud. Pure Math. 85, The Role of Metrics in the Theory of Partial Differential Equations, pp. 63-93, Mathematical Society of Japan, 2020. |
P3.? | ???? | Thresholding for mean curvature flow in codimension two, with Aaron Yip, Oberwolfach Report, OWR 3/2019,?pp. 147-150. DOI:10.4171/OWR/2019/3 |
P2. | Brakke – de Giorgi – Osher, with Felix Otto, Oberwolfach Report, OWR 54/2017, pp.?3219-3222. DOI:10.4171/OWR/2017/54 | |
P1. | ???? | Kornwachstum in Polykristallen: Algorithmen für den mittleren Krümmungsfluss, with Felix Otto, Research Report, MPI for Mathematics in the Sciences, 2017. |
L1. | ???? | Distributional solutions to mean curvature flow,?38 pages, arXiv:2108.08347 |
O3. | Sauer, J., 2022. Episode 8 - Tim Laux. Literatur-Rundschau. DOI:10.22032/dbt.59076 | |
O2. | Die Mathematik des Kristallwachstums?– ein Forschungsauftrag für Schüler*innen, with Fabian Weidt and Stefan Hartmann Exposition, lecture material for highschool teachers & a game | |
O1. | Optimale Formen und Muster -?Ist die Natur eine Mathematikerin? Vorlesung im Rahmen der?Schüler*innenwoche am Hausdorffzentrum für Mathematik der Universit?t Bonn Skript mit Aufgaben |
T3. | ???? | Convergence of phase-field models and thresholding schemes via the gradient flow structure of multi-phase mean-curvature flow, PhD Thesis, Max Planck Institute for Mathematics in the Sciences and University of Leipzig, 2017. |
T2. | ???? | Dynamics of magnetic phase transitions, Master's Thesis,?RWTH Aachen University, 2013. |
T1. | ???? | Maximum principles in differential inequalities and monotonicity of solutions, Bachelor's Thesis,?RWTH Aachen University, 2011. |
Prof. Dr. Tim Laux
Contact:
Prof. Dr. Tim Laux
Faculty of Mathematics
University of Regensburg
tim.laux(at)ur.de
+49 228 / 73-62225