Direkt zum Inhalt


Research topics

  • Business Process Management (Modeling, Execution, Mining)
  • IoT-aware Business Processes Management (e.g. Industrial IoT Processes, Location-aware Processes)
  • Process-oriented Cyber Security Management
  • Cyber Security Compliance in Industrial IoT

Awards

  • Best Paper Runner-Up at the International Conference on Cooperative Information Systems (CoopIS 2023)
  • Business Process Innovation Award (BPM 2019)
  • Best Paper Award, Int. Workshop on Emerging Computing Paradigms and Context in Business Process Management (CCBPM 2018)
  • Best Paper Award, Int. Conference on Enterprise Information Systems (ICEIS 2018)
  • Best Paper Award, 11th Int. Workshop on Enterprise & Organizational Modeling and Simulation (EOMAS 2015)
  • T-Systems Innovation Award (2012)

CV

Stefan Sch?nig received both the Master degree (with honors) in Applied Computer Science (Engineering/Computer Science) and the doctoral degree from University of Bayreuth. He was post doctoral researcher with the Institute for Information Business at Vienna University of Economics and Business (Prof. Dr. Jan Mendling) and held a position as a tenured assistant professor at University of Bayreuth (Prof. Dr.-Ing. Stefan Jablonski). Currently, he is Full Professor and Head of the Chair for Process-based Information Systems with the Department of Information Systems at University of Regensburg in Germany. He has an established background in Business Process Management, Process Mining and Process-based Cyber Security Management and has been working in this field for over 14 years. He has participated in several industry projects that addressed digital process management and IT/IoT security. He published extensively in the research area of Business Process Management and Information Systems, both in international conferences and journals. He serves in several international conference program committees.

Publications

  • Hornsteiner, Markus, Stoiber, Christoph und Sch?nig, Stefan. "Towards Security- and IIoT-Aware BPMN: A Systematic Literature Review".
    SCITEPRESS, 2022, pp. 45—56. https://dx.doi.org/10.5220/0011317700003280
  • K?ppel, Martin, Jablonski, Stefan und Sch?nig, Stefan. "Cost-Sensitive Predictive Business Process Monitoring".
    vol. 1450, Springer, 2021, pp. 14—26. https://dx.doi.org/10.1007/978-3-030-85082-1_2
  • Sch?nig, Stefan "Entscheidungsintensive und flexible Gesch?ftsprozesse".
    De Gruyter, 2021, pp. 269—280.
  • K?ppel, Martin, Jablonski, Stefan und Sch?nig, Stefan. "Evaluating Predictive Business Process Monitoring Approaches on Small Event Logs".
    vol. 1439, Springer, 2021, pp. 167—182. https://dx.doi.org/10.1007/978-3-030-85347-1_13
  • K?ppel, Martin, Jablonski, Stefan und Sch?nig, Stefan. "Evaluating Predictive Business Process Monitoring Approaches on Small Event Logs".
    CoRR, vol. abs/2104.00362, 2021,
  • Stoiber, Christoph und Sch?nig, Stefan. "Event-Driven Business Process Management enhancing IoT - a Systematic Literature Review and Development of Research Agendas".
    AISeL, 2021,
  • Ruhkamp, Niklas und Sch?nig, Stefan. "Execution of Multi-Perspective Declarative Process Models Using Complex Event Processing".
    2021, pp. 95—104. https://dx.doi.org/10.52825/BIS.V1I.51
  • K?ppel, Martin, Ackermann, Lars, Sch?nig, Stefan und Jablonski, Stefan. "Language-independent look-ahead for checking multi-perspective declarative process models".
    Softw. Syst. Model., vol. 20, no. 5, 2021, pp. 1379—1401. https://dx.doi.org/10.1007/S10270-020-00857-8
  • K?ppel, Martin, Sch?nig, Stefan und Jablonski, Stefan. "Leveraging Small Sample Learning for Business Process Management".
    Inf. Softw. Technol., vol. 132, 2021, pp. 106472. https://dx.doi.org/10.1016/J.INFSOF.2020.106472
  • Stoiber, Christoph und Sch?nig, Stefan. "Process-aware Decision Support Model for Integrating Internet of Things Applications using AHP".
    SCITEPRESS, 2021, pp. 869—876. https://dx.doi.org/10.5220/0010400208690876
  • Sch?nig, Stefan, Ermer, Andreas und Jablonski, Stefan. "Sensor-Enabled Wearable Process Support in the Production Industry".
    Springer, 2021, pp. 29—40. https://dx.doi.org/10.1007/978-3-662-63047-1_3
  • Schützenmeier, Nicolai, Jablonski, Stefan und Sch?nig, Stefan. "Towards a Hybrid Process Modeling Language".
    vol. 415, Springer, 2021, pp. 630—636. https://dx.doi.org/10.1007/978-3-030-75018-3_46
  • Küfner, Thomas, Sch?nig, Stefan, Jasinski, Richard und Ermer, Andreas. "Vertical data continuity with lean edge analytics for industry 4.0 production".
    Comput. Ind., vol. 125, 2021, pp. 103389. https://dx.doi.org/10.1016/J.COMPIND.2020.103389
  • Sch?nig, Stefan, Jasinski, Richard und Ermer, Andreas. "Data Interaction for IoT-Aware Wearable Process Management".
    vol. 12632, Springer, 2020, pp. 67—71. https://dx.doi.org/10.1007/978-3-030-76352-7_10
  • Sturm, Christian, Szalanczi, Jonas, Jablonski, Stefan und Sch?nig, Stefan. "Decentralized Control: A Novel Form of Interorganizational Workflow Interoperability".
    vol. 400, Springer, 2020, pp. 261—276. https://dx.doi.org/10.1007/978-3-030-63479-7_18
  • Sch?nig, Stefan, Ackermann, Lars, Jablonski, Stefan und Ermer, Andreas. "IoT meets BPM: a bidirectional communication architecture for IoT-aware process execution".
    Softw. Syst. Model., vol. 19, no. 6, 2020, pp. 1443—1459. https://dx.doi.org/10.1007/S10270-020-00785-7
  • Fichtner, Myriel, Sch?nig, Stefan und Jablonski, Stefan. "Process Management Enhancement by using Image Mining Techniques: A Position Paper".
    SCITEPRESS, 2020, pp. 249—255. https://dx.doi.org/10.5220/0009573502490255
  • Englbrecht, Ludwig, Sch?nig, Stefan und Pernul, Günther. "Supporting Process Mining with Recovered Residual Data".
    vol. 400, Springer, 2020, pp. 389—404. https://dx.doi.org/10.1007/978-3-030-63479-7_27
  • Cabanillas, Cristina, Ackermann, Lars, Sch?nig, Stefan, Sturm, Christian und Mendling, Jan. "The RALph miner for automated discovery and verification of resource-aware process models".
    Softw. Syst. Model., vol. 19, no. 6, 2020, pp. 1415—1441. https://dx.doi.org/10.1007/S10270-020-00820-7
  • Fichtner, Myriel, Sch?nig, Stefan und Jablonski, Stefan. "Using Image Mining Techniques from a Business Process Perspective".
    vol. 417, Springer, 2020, pp. 62—83. https://dx.doi.org/10.1007/978-3-030-75418-1_4
  • Sturm, Christian, Scalanczi, Jonas, Sch?nig, Stefan und Jablonski, Stefan. "A Blockchain-based and resource-aware process execution engine".
    Future Gener. Comput. Syst., vol. 100, 2019, pp. 19—34. https://dx.doi.org/10.1016/J.FUTURE.2019.05.006
  • Sch?nig, Stefan, Ciccio, Claudio Di und Mendling, Jan. "Configuring SQL-based process mining for performance and storage optimisation".
    ACM, 2019, pp. 94—97. https://dx.doi.org/10.1145/3297280.3297532
  • Schützenmeier, Nicolai, K?ppel, Martin, Petter, Sebastian, Sch?nig, Stefan und Jablonski, Stefan. "Detection of Declarative Process Constraints in LTL Formulas".
    vol. 366, Springer, 2019, pp. 131—145. https://dx.doi.org/10.1007/978-3-030-35646-0_10
  • Sturm, Christian, Fichtner, Myriel und Sch?nig, Stefan. "Full Support for Efficiently Mining Multi-Perspective Declarative Constraints from Process Logs".
    Inf., vol. 10, no. 1, 2019, pp. 29. https://dx.doi.org/10.3390/INFO10010029
  • Sch?nig, Stefan, Jablonski, Stefan und Ermer, Andreas. "IoT-basiertes Prozessmanagement - Mobile Benutzerführung in der digitalen Fabrik".
    Inform. Spektrum, vol. 42, no. 2, 2019, pp. 130—137. https://dx.doi.org/10.1007/S00287-019-01140-X
nach oben